A. Learning Objectives
1. Defining Operating System.
2. Identify the various types of OS and discuss the features of the each type
B. Learning Outcomes
1. Identify the various types of OS and discuss the features of the each type
2. To identify the key features of the each types of OS
Objectives
To provide a grand tour of the major operating systems components
To provide coverage of basic computer system organization
What is an Operating System?
A program that acts as an intermediary between a user of a computer and the computer hardware.
Operating system goals:
Execute user programs and make solving user problems easier.
Make the computer system convenient to use.
Use the computer hardware in an efficient manner.
Computer System Structure
Computer system can be divided into four components
Hardware – provides basic computing resources
CPU, memory, I/O devices
Operating system
Controls and coordinates use of hardware among various applications and users
Application programs – define the ways in which the system resources are used to solve the computing problems of the users
Word processors, compilers, web browsers, database systems, video games
Users
People, machines, other computers
Four Components of a Computer System
Operating System Definition
OS is a resource allocator
Manages all resources
Decides between conflicting requests for efficient and fair resource use
OS is a control program
Controls execution of programs to prevent errors and improper use of the computer
No universally accepted definition
“Everything a vendor ships when you order an operating system” is good approximation
But varies wildly
“The one program running at all times on the computer” is the kernel. Everything else is either a system program (ships with the operating system) or an application program
Computer Startup
bootstrap program is loaded at power-up or reboot
Typically stored in ROM or EPROM, generally known as firmware
Initializates all aspects of system
Loads operating system kernel and starts execution
Computer System Organization
Computer-system operation
One or more CPUs, device controllers connect through common bus providing access to shared memory
Concurrent execution of CPUs and devices competing for memory cycles
Computer-System Operation
I/O devices and the CPU can execute concurrently.
Each device controller is in charge of a particular device type.
Each device controller has a local buffer.
CPU moves data from/to main memory to/from local buffers
I/O is from the device to local buffer of controller.
Device controller informs CPU that it has finished its operation by causing an interrupt.
Common Functions of Interrupts
Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines.
Interrupt architecture must save the address of the interrupted instruction.
Incoming interrupts are disabled while another interrupt is being processed to prevent a lost interrupt.
A trap is a software-generated interrupt caused either by an error or a user request.
An operating system is interrupt driven.
Interrupt Handling
The operating system preserves the state of the CPU by storing registers and the program counter.
Determines which type of interrupt has occurred:
polling
vectored interrupt system
Separate segments of code determine what action should be taken for each type of interrupt
Interrupt Timeline
I/O Structure
After I/O starts, control returns to user program only upon I/O completion.
Wait instruction idles the CPU until the next interrupt
Wait loop (contention for memory access).
At most one I/O request is outstanding at a time, no simultaneous I/O processing.
After I/O starts, control returns to user program without waiting for I/O completion.
System call – request to the operating system to allow user to wait for I/O completion.
Device-status table contains entry for each I/O device indicating its type, address, and state.
Operating system indexes into I/O device table to determine device status and to modify table entry to include interrupt.
Two I/O Methods (a) Synchronous (b) Asynchronous
Device-Status Table
Direct Memory Access Structure
Used for high-speed I/O devices able to transmit information at close to memory speeds.
Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention.
Only one interrupt is generated per block, rather than the one interrupt per byte.
Storage Structure
Main memory – only large storage media that the CPU can access directly.
Secondary storage – extension of main memory that provides large nonvolatile storage capacity.
Magnetic disks – rigid metal or glass platters covered with magnetic recording material
Disk surface is logically divided into tracks, which are subdivided into sectors.
The disk controller determines the logical interaction between the device and the computer.
Storage Hierarchy
Storage systems organized in hierarchy.
Speed
Cost
Volatility
Caching – copying information into faster storage system; main memory can be viewed as a last cache for secondary storage.
Storage-Device Hierarchy
Caching
Important principle, performed at many levels in a computer (in hardware, operating system, software)
Information in use copied from slower to faster storage temporarily
Faster storage (cache) checked first to determine if information is there
If it is, information used directly from the cache (fast)
If not, data copied to cache and used there
Cache smaller than storage being cached
Cache management important design problem
Cache size and replacement policy
Performance of Various Levels of Storage
Movement between levels of storage hierarchy can be explicit or implicit
Operating System Structure
Multiprogramming needed for efficiency
Single user cannot keep CPU and I/O devices busy at all times
Multiprogramming organizes jobs (code and data) so CPU always has one to execute
A subset of total jobs in system is kept in memory
One job selected and run via job scheduling
When it has to wait (for I/O for example), OS switches to another job
Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
Response time should be < 1 second
Each user has at least one program executing in memory process
If several jobs ready to run at the same time CPU scheduling
If processes don’t fit in memory, swapping moves them in and out to run
Virtual memory allows execution of processes not completely in memory
Subscribe to:
Post Comments (Atom)
Click here for Myspace Layouts
2 comments:
give some explanation of interrupt timeline diagram?
give some explanation of interrupt timeline diagram?
Post a Comment